OMPON (1)		ORIGINAL MEASUREMENTS:
\-/	Benzenesulfonamide, 4-amino-N-(amino-	Dolique, R.; Foucault, J.
	iminomethyl) - monohydrate (sulfaguani-	Trav. soc. pharm. Montpellier 1952, 12,
	dine monohydrate); C ₇ H ₁₀ N ₄ O ₂ S·H ₂ O	145-53
(2)	Ethanol; C ₂ H ₆ O; [64-17-5]	
(3)	1,2,3-Propanetrio1; C ₃ H ₈ O ₃ ; [56-81-5] Urea; CH4N ₂ O; [57-13-6]	
(5)	Water; H 0; [7732-18-5]	
ARIA		PREPARED BY:
	One temperature: 26-28°C	R. Piekos
XPERI	MENTAL VALUES:	
	Solubility of sulfaguanidine monohydrat	te at 26-28°C in a saturated solution of
		and 95° ethanol (2:1 by wt), containing
	54.5 g of urea per 100 g of the mixture	
		, is 0.20% (0.207 mor ng sorvene,
	compiler).	
		INFORMATION
ETHO:	AUXILIARY D/APPARATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY OF MATERIALS:
		<u>, </u>
ī	D/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
T b	D/APPARATUS/PROCEDURE: The sulfaguanidine monohydrate was detd by diazotization of the amine group in a	SOURCE AND PURITY OF MATERIALS:
T b	D/APPARATUS/PROCEDURE: The sulfaguanidine monohydrate was detd by diazotization of the amine group in a cold acidified 0.1N KNO ₂ soln. An	SOURCE AND PURITY OF MATERIALS:
T b c	D/APPARATUS/PROCEDURE: The sulfaguanidine monohydrate was detd by diazotization of the amine group in a cold acidified 0.1N KNO ₂ soln. An excess of KNO ₂ was detected by using	SOURCE AND PURITY OF MATERIALS:
T b c	D/APPARATUS/PROCEDURE: The sulfaguanidine monohydrate was detd by diazotization of the amine group in a cold acidified 0.1N KNO ₂ soln. An	SOURCE AND PURITY OF MATERIALS:
T b c	D/APPARATUS/PROCEDURE: The sulfaguanidine monohydrate was detd by diazotization of the amine group in a cold acidified 0.1N KNO ₂ soln. An excess of KNO ₂ was detected by using	SOURCE AND PURITY OF MATERIALS:
T b c	D/APPARATUS/PROCEDURE: The sulfaguanidine monohydrate was detd by diazotization of the amine group in a cold acidified 0.1N KNO ₂ soln. An excess of KNO ₂ was detected by using	SOURCE AND PURITY OF MATERIALS:
T b c	D/APPARATUS/PROCEDURE: The sulfaguanidine monohydrate was detd by diazotization of the amine group in a cold acidified 0.1N KNO ₂ soln. An excess of KNO ₂ was detected by using	SOURCE AND PURITY OF MATERIALS:
T b c	D/APPARATUS/PROCEDURE: The sulfaguanidine monohydrate was detd by diazotization of the amine group in a cold acidified 0.1N KNO ₂ soln. An excess of KNO ₂ was detected by using	SOURCE AND PURITY OF MATERIALS: Nothing specified.
T b c	D/APPARATUS/PROCEDURE: The sulfaguanidine monohydrate was detd by diazotization of the amine group in a cold acidified 0.1N KNO ₂ soln. An excess of KNO ₂ was detected by using	SOURCE AND PURITY OF MATERIALS:
T b c	D/APPARATUS/PROCEDURE: The sulfaguanidine monohydrate was detd by diazotization of the amine group in a cold acidified 0.1N KNO ₂ soln. An excess of KNO ₂ was detected by using	SOURCE AND PURITY OF MATERIALS: Nothing specified. ESTIMATED ERROR:
T b c	D/APPARATUS/PROCEDURE: The sulfaguanidine monohydrate was detd by diazotization of the amine group in a cold acidified 0.1N KNO ₂ soln. An excess of KNO ₂ was detected by using	SOURCE AND PURITY OF MATERIALS: Nothing specified.
T b c	D/APPARATUS/PROCEDURE: The sulfaguanidine monohydrate was detd by diazotization of the amine group in a cold acidified 0.1N KNO ₂ soln. An excess of KNO ₂ was detected by using	SOURCE AND PURITY OF MATERIALS: Nothing specified. ESTIMATED ERROR: Nothing specified.
T b c	D/APPARATUS/PROCEDURE: The sulfaguanidine monohydrate was detd by diazotization of the amine group in a cold acidified 0.1N KNO ₂ soln. An excess of KNO ₂ was detected by using	SOURCE AND PURITY OF MATERIALS: Nothing specified. ESTIMATED ERROR:
T b c	D/APPARATUS/PROCEDURE: The sulfaguanidine monohydrate was detd by diazotization of the amine group in a cold acidified 0.1N KNO ₂ soln. An excess of KNO ₂ was detected by using	SOURCE AND PURITY OF MATERIALS: Nothing specified. ESTIMATED ERROR: Nothing specified.
T b c	D/APPARATUS/PROCEDURE: The sulfaguanidine monohydrate was detd by diazotization of the amine group in a cold acidified 0.1N KNO ₂ soln. An excess of KNO ₂ was detected by using	SOURCE AND PURITY OF MATERIALS: Nothing specified. ESTIMATED ERROR: Nothing specified.

ORIGINAL MEASUREMENTS: COMPONENTS: (1) Benzenesulfonamide, 4-amino-N-(amino-Dolique, R.; Foucault, J. iminomethyl) - monohydrate (sulfaguani-Trav. soc. pharm. Montpellier 1952, 12, dine monohydrate); $C_7^H_{10}^{N_4}^{O_2}^{S \cdot H_2}^{O}$; 145-53. [6190-55-2] (2) Ethanol; C₂H₆O; [64-17-5] (3) 1,2,3-Propanetriol; C₃H₈O₃; [56-81-5] (4) Water; H₂O; [7732-18-5] VARIABLES: PREPARED BY: One temperature: 26-28°C R. Piekos EXPERIMENTAL VALUES: Solubility of sulfaguanidine monohydrate in a mixture of 1,2,3-propanetriol and 95° ethanol (2:1 by wt) at 26-28°C is 4.33% (0.195 mol kg⁻¹ solvent, compiler). AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: The sulfaguanidine monohydrate content Nothing specified. was detd by diazotization of the amine group in a cold acidified 0.1N KNO2 soln. An excess of KNO, was detected by using iodinated starch. ESTIMATED ERROR: Nothing specified. REFERENCES: